Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.
Теорема.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.
Доказательство.
Пусть ABCD – данный параллелограмм, O – точка пересечения диагоналей данного параллелограмма.
Δ AOD = Δ COB по первому признаку равенства треугольников (OD = OB, AO = OC по условию теоремы, ∠ AOD = ∠ COB, как вертикальные углы) . Следовательно, ∠ OBC = ∠ ODA. А они являются внутренними накрест лежащими для прямых AD и BC и секущей BD. По признаку параллельности прямых прямые AD и BC параллельны. Так же доказываем, что AB и DC тоже параллельны. По определению данный четырехугольник параллелограмм. Теорема доказана.
Теорема.
Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.
Пусть ABCD – данный четырехугольник. AD параллельно BC и AD = BC.
Тогда Δ ADB = Δ CBD по первому признаку равенства треугольников (∠ ADB = ∠ CBD, как внутренние накрест лежащие между прямыми AD и BC и секущей DB, AD=BC по условию, DB – общая) .
Следовательно, ∠ ABD = ∠ CDB, а эти углы являются внутренними накрест лежащими для прямых AB и CD и секущей DB. По теореме признаке параллельности прямых AB и CD параллельны. Значит, ABCD – параллелограмм. Теорема доказана.
Теорема.
Если в четырехугольнике противолежащие углы равны, такой четырехугольник – параллелограмм.
Доказательство.
Пусть дан четырехугольник ABCD. ∠ DAB = ∠ BCD и ∠ ABC = ∠ CDA.
Проведем диагональ DB. Сумма углов четырех угольника равна сумме углов треугольников ABD и BCD. Так как сумма углов в треугольнике равна 180 º,
∠ DAB + ∠ BCD + ∠ ABC + ∠ CDA.= 360 º. Так как противолежащие углы в четырехугольнике равны, то ∠ DAB + #8736 ABC = 180 º и ∠ BCD + ∠ CDA = 180 º.
Углы BCD и CDA являются внутренними односторонними для прямых AD и ВС и секущей DC, их сумма равна 180 º, поэтому из следствия к теореме о признаке параллельности прямых, прямые AD и ВС параллельны. Так же доказывается, что AB || DC. Таким образом, четырехугольник ABCD – параллелограмм по определению. Теорема доказана.
Домашние задания: Другие предметы
Геометрия 11 класс. Как доказать что прямоугольник параллилограмм?
Всякий прямоугольник является параллелограммом. По определению прямоугольник - это параллелограмм, у которого все углы прямые.
Противоположные стороны параллельны, противолежащие углы равны (хотя и по 90 градусов)
Похожие вопросы
- Очень нужна помощь по геометрии 11 класс! ! Задачи внутри - они не сложные!!!
- Помогите!!!Геометрия 11 класс
- Задача по геометрии. 11 класс.
- геометрия 11 класс
- Геометрия 11 класс. Помогите пожалуйста!
- Помогите с геометрией. 11 класс
- Помогите с ГЕОМЕТРИЕЙ 11 класс. Тема: ПИРАМИДА
- Помогите с задачей, прошу (геометрия, 11 класс)
- Помогите с геометрией 11 класс
- геометрия 8 класс найдите площадь прямоугольника,если одна из его сторон равна 5 см а угол между диагоналями равен 60 г