Домашние задания: Другие предметы

Алгебра 9 класс Объясните пожалуйста тему по алгебре " Геометрическая вероятность" Пожалуйста по-подробнее

Геометрическая вероятностьКлассическое определение вероятности связано с понятием элементарного события. Рассматривается некий набор Ω равновероятных событий Ai, которые в совокупности дают достоверное событие. И тогда все хорошо: всякое событие разбивается на элементарные, после чего считается его вероятность. Однако, далеко не всегда исходный набор Ω (т. е. пространство всех элементарных событий) является конечным. Например, в качестве Ω можно взять ограниченное множество точек на плоскости или отрезок на прямой. Классическое определение вероятности связано с понятием элементарного события. Рассматривается некий набор Ω равновероятных событий Ai, которые в совокупности дают достоверное событие. И тогда все хорошо: всякое событие разбивается на элементарные, после чего считается его вероятность. В качестве события A можно рассмотреть любую подобласть области Ω. Например, фигуру внутри исходной фигуры на плоскости или отрезок, лежащий внутри исходного отрезка на прямой.
Заметим, что элементарным событием на таком множестве может быть только точка. В самом деле, если множество содержит более одной точки, его можно разбить на два непустых подмножества. Следовательно, такое множество уже неэлементарно.
Теперь определим вероятность. Тут тоже все легко: вероятность «попадания» в каждую конкретную точку равна нулю. Иначе получим бесконечную сумму одинаковых положительных слагаемых (ведь элементарные события равновероятны) , которые в сумме по-любому больше P(Ω) = 1.
Итак, элементарные события для бесконечных областей Ω — это отдельные точки, причем вероятность «попадания» в любую из них равна нулю. Но как искать вероятность неэлементарного события, которое, подобно Ω, содержит бесконечное множество точек? Вот мы и пришли к определению геометрической вероятности.
Геометрическая вероятность события A, являющегося подмножеством множества Ω точек на прямой или плоскости — это отношение площади фигуры A к площади всего множества Ω:
Формула геометрической вероятностиЗадача. Мишень имеет форму окружности радиуса 4. Какова вероятность попадания в ее правую половину, если попадание в любую точку мишени равновероятно? При этом промахи мимо мишени исключены.
Окружность радиуса 4Взглянем на картинку: нас устроит любая точка из правого полукруга. Очевидно, площадь S(A) этого полукруга составляет ровно половину площади всего круга, поэтому имеем:
Геометрическая вероятность: пример расчетаКак видите, ничего сложного в геометрической вероятности нет. Однако даже в Москве многие репетиторы по высшей математике стараются обойти эту тему стороной, поскольку считают ее необязательной. Результат — непонимание материала и, как следствие, проблемы на экзамене по теории вероятностей.
Механизм возникновения положительных чисел и бесконечностей связан с понятием счетности множества. Кроме того, надо понимать, что такое мера Лебега. Впрочем, эти знания действительно нужны вам, только если вы учитесь на математика.
Серёга Хвощенко
Серёга Хвощенко
700
Лучший ответ
Money, money....
Нет, деточка! За "здорОво живешь" никто, имхо, это объяснять тебе не будет. Не жди напрасно...
ДМ
Дима Миляев
70 043
Геометрическая вероятность?? ? Я такое в 9ом классе вообще не проходил, может геометрическая прогрессия?
Тамерлан Баев
Тамерлан Баев
1 305