Школы

Помогите, пожалуйста, решить задачку по алгебре ребенку. Самой никак не удается(((

Через первую трубу можно наполнить бассейн на 5 ч быстрее, чем через вторую,а третья наполняет бассейн на 4 ч быстрее, чем первая. за какое время можно наполнить бассейн через третью трубу, если это время равно времени, за которое наполняюь бассейн первя и вторая трубы вместе.
Пусть через 2 трубу бассейн наполняется за х час, тогда за 1 час наполнится 1/х часть бассейна.
Через 1 трубу бассейн наполняется за х - 5 час, за 1 час наполнится 1/(х - 5) часть бассейна.
Через 3 трубу бассейн наполняется за х - 5 - 4 = х - 9 час, за 1 час наполнится 1/(х - 9) часть бассейна.
Первая и вторая трубы вместе за 1 час нальют 1/(х - 5) + 1/х часть бассейна. По условию
1/(х - 5) + 1/х = 1/(х - 9)
x(x - 9) + (x - 5)(x - 9) = x(x - 5)
x^2 - 9x + x^2 - 14x + 45 = x^2 - 5x
x^2 - 18x + 45 = 0
(x - 3)(x - 15) = 0
x = 3 - не подходит, потому что тогда x - 5 < 0
x = 15 - 2 труба
x - 5 = 10 - 1 труба
x - 9 = 6 - 3 труба
Елизавета Тарасенко
Елизавета Тарасенко
69 197
Лучший ответ
Единственное, это надо объяснить ребёнку, что в подобных задачах за единицу принимается вся работа. Тогда 1: на производительность и будет время
x, y, z - пропускная способность. Система:

1/x + 5 = 1/y

1/z + 4 = 1/x

1/z = 1/(x+ y)
-----------------------
х = 1/10; у = 1/15; z = 1/6

Ответ: 6.
1труба) пусть будет Х+5
2 труба) Х
3 труба) Х+5+4
1труба + 2 труба= 3 труба
Х+5+Х=Х+5+4
Х+Х-Х=5+4-5
Х=4