Школы

помогите с вопросом по геометрий

Определение перпендикулярных прямых. Построение прямой, проходящей через точку, не лежащую на данной прямой и перпендикулярную к данной прямой.
Пусть а и b — прямые, пересекающиеся в точке А . Каждая из этих прямых точкой А делится на две полупрямые. Полупрямые одной прямой образуют с полупрямыми другой прямой четыре угла. Пусть альфа — один из этих углов. Тогда любой из остальных трех углов будет либо смежным с углом альфа, либо вертикальным с углом альфа
Отсюда следует, что если один из углов прямой, то остальные углы тоже будут прямые, В этом случае мы говорим, что прямые пересекаются под прямым углом.
Определение.
Две прямые называются перпендикулярными, если они пересекаются под прямым углом
Перпендикулярность прямых обозначается знаком ⊥ Запись а ⊥ b читается: Прямая а перпендикулярна прямой b.
Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну

Построение прямой, проходящей через точку О, не лежащую на данной прямой -а и перпендикулярную к данной прямой.

Шаг 1. Из точки O проводим окружность некоторым радиусом r, таким чтобы окружность пересекала прямую a. Пусть A и B – точки пересечения окружности с прямой a.

16032011 5.jpg

Шаг 2. Проведем окружности тем же радиусом r с центрами в точках A и B. Пусть точка O1 – точка пресечения этих окружностей, лежащая в полуплоскости, отличной от той, в которой лежит точка O.

16032011 6.jpg

Шаг 3. Проведем через точки O и O1 прямую. Это и будет искомая прямая.

Доказательство.

Пусть прямые OO1 и AB пересекаются в точке С. Δ AOB = Δ BO1A по третьему признаку равенства треугольников (AO = OB = AO1 = O1B, по построению, AB – общая). Отсюда следует, что ∠ OAС = ∠ O1AC. Δ OAC = Δ O1AC по первому признаку равенства треугольников (AO = AO1, по построению, ∠ OAС = ∠ O1AC, AС – общая). Следовательно ∠ OСA = ∠ O1CA, а так как эти углы смежные, то они прямые. Поэтому OC – перпендикуляр, опущенный из точки O на прямую a.

Т. е. с помощью циркуля и линейки мы можем стоить перпендикулярные прямые, независимо от того точка через какую должен проходить перпендикуляр находиться на отрезке или за его пределами. Оба варианта имеют три шага, единственная сложность в том что бы правильно найти начальные точки А и В.
Ульянка Васильева
Ульянка Васильева
31 248
Лучший ответ