1. (2lg (2) + lg (x-3)) / (lg (7x+1) + lg (x-6) + lg (3)) = 1/2
ОДЗ:
(x-3) > 0 => x > 3
(7x+1) > 0 => x > - 1/7
(x-6) > 0 => x > 6
=> общее ОДЗ: x > 6
и
(lg (7x+1) + lg (x-6) + lg (3)) не = 0 или
lg ((7x+1)(x-6)*3)) не= 0 или
3*(7x+1)(x-6) не= 10^0 или не = 1
=>
___ (2lg (2) + lg (x-3)) = (lg (2^2) + lg (x-3)) = lg (4*(x-3) = lg (4x-12)
___ (lg (7x+1) + lg (x-6) + lg (3)) = lg ((7x+1)(x-6)*3)
=>
lg (4x-12) / lg ((7x+1)(x-6)*3) = 1/2
2*lg (4x-12) = lg ((7x+1)(x-6)*3)
lg (4x-12)^2 = lg ((7x+1)(x-6)*3)
(4x-12)^2 = 3*(7x+1)(x-6)
Решить уравнение