Автострахование

Стуктура белка

Молекулы белков представляют собой линейные полимеры, состоящие из α-L-аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот (правда, модификации происходят уже после синтеза белка на рибосоме) . Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур, на самом деле количество вариантов трудно переоценить: для цепочки всего из 5 аминокислот оно составляет уже более 3 миллионов, а цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10130 вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации — белками, хотя это деление весьма условно.

При образовании белка в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-COOH) другой аминокислоты образуются пептидные связи. Концы белка называют C- и N-концом (в зависимости от того, какая из групп концевой аминокислоты свободна: -COOH или -NH2, соответственно) . При синтезе белка на рибосоме новые аминокислоты присоединяются к C-концу, поэтому название пептида или белка даётся путём перечисления аминокислотных остатков начиная с N-конца.

Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде последовательности нуклеотидов, причём одной аминокислоте соответствует в ДНК последовательность из трёх нуклеотидов — так называемый триплет или кодон. То, какая аминокислота соответствует данному кодону в мРНК, определяется генетическим кодом, который может несколько отличаться у разных организмов. Синтез белков на рибосомах происходит, как правило, из 20 аминокислот, называемых стандартными [12]. Триплетов, которыми закодированы аминокислоты в ДНК, у разных организмов от 61 до 63 (то есть от числа возможных триплетов (4³ = 64), вычтено число стоп-кодонов (1—3)). Поэтому появляется возможность, что большинство аминокислот может быть закодировано разными триплетами. То есть, генетический код может является избыточным или, иначе, вырожденным. Это было окончательно доказано в эксперименте при анализе мутаций [13]. Генетический код, кодирующий различные аминокислоты имеет разную степень вырожденности (кодируются от 1 до 6 кодонами) , это зависит от частоты встречаемости данной аминокислоты в белках, за исключением аргинина [13]. Часто основание в третьем положении оказывается несущественным для специфичности, то есть одна аминокислота может быть представлена четырьмя кодонами, различающимися только третьим основанием. Иногда различие состоит в предпочтении пурина пиримидину. Это называют вырожденностью третьего основания.

Такой трёхкодонный код сложился эволюционно рано. Но существование различий в некоторых организмах, появившихся на разных эволюционных стадиях, указывает на то, что он был не всегда таким.

Согласно некоторым моделям, сначала код существовал в примитивном виде, когда малое число кодонов обозначало сравнительно небольшое число аминокислот. Более точное значение кодонов и большее число аминокислот могли быть введены позже. Сначала только первые два из трех оснований могли быть использованы для узнавания [что зависит от структуры тРНК].
АА
Ануар Абделиев
50 891
Лучший ответ
Сложная, состоит из многих составляющих.
Структура белка [20]

Клетки в значительной степени состоят из белков, на долю которых приходится более половины их сухого вещества (см. табл. 3-1). Белки определяют структуру и форму клетки; кроме того, они служат инструментами молекулярного узнавания и катализа. ДНК, хотя и содержит всю необходимую для построения клетки информацию, оказывает незначительное прямое воздействие на клеточные процессы. Например, ген гемоглобина сам не переносит кислород: это свойство белка, кодируемого им. Используя компьютерную терминологию, можно сказать, что ДНК и мРНК представляют собой «программное обеспечение» - инструкции, полученные клеткой от родительской клетки. Белки и молекулы каталитических РНК составляют «аппаратное обеспечение» - физические механизмы, осуществляющие хранящуюся в памяти программу.
ДНК и РНК представляют собой цепи, построенные из нуклеотидов, химически очень похожих друг на друга. Напротив, молекулы белков собраны из 20 очень разных аминокислот, каждая из которых обладает ярко выраженной химической индивидуальностью. Это разнообразие лежит в основе необычайной универсальности химических свойств различных белков, и, по-видимому, эволюция выбрала именно белки, а не молекулы РНК в качестве катализаторов большинства реакций в клетке.
Ну белка! Ну курить то стока низяяяя!
аминокислота
точно наверно обшарошилась такие вопросики хе хе 10 класс
Twister Twister
Twister Twister
683