Школы

решить уравнение tg^2x+ctg^2x+tg^3x+ctg^3x=4 пожалуйста подробно

Составной частью ЕГЭ являются тригонометрические уравнения.

К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

сos px = a;sin gx = b;tg kx = c;ctg tx = d.
Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

1. Формулы двойного аргумента, тройного аргумента:

сos 2x = cos2 x – sin2 x = 1 – 2 sin2 x = 2 cos2 x – 1;

sin 2x = 2 sin x cos x;

tg 2x = 2 tg x/1 – tg x;

ctg 2x = (ctg2 x – 1)/2 ctg x;

sin 3x = 3 sin x – 4 sin3 x;

cos 3x = 4 cos3 x – 3 cos x;

tg 3x = (2 tg x – tg3 x)/(1 – 3 tg2 x);

ctg 3x = (ctg3 x – 3ctg x)/(3ctg2 x – 1);

2. Формулы половинного аргумента или понижения степени:

sin2 x/2 = (1 – cos x)/2; сos2 x/2 = (1 + cos x)/2;

tg2 x = (1 – cos x)/(1 + cos x);

ctg2 x = (1 + cos x)/(1 – cos x);

3. Введение вспомогательного аргумента:

рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a2 + b2), cos y = a/v(a2 + b2), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a2 + b2) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

4. Формулы сложения и вычитания:

sin (a + b) = sin a cos b + cos a sin b;

sin (a – b) = sin a cos b – cos a sin b;

cos (a + b) = cos a cos b – sin a sin b;

cos (a – b) = cos a cos b + sin a sin b;

tg (a + b) = ( tg a + tg b)/(1 – tg a tg b);

tg (a – b) = ( tg a – tg b)/(1 + tg a tg b);

5. Универсальная тригонометрическая подстановка:

sin a = 2 tg (a/2)/(1 + (tg2 (a/2));

cos a = (1 – tg2 (a/2))/(1 + (tg2 (a/2));

tg a = 2 tg a/2/(1 – tg2 (a/2));

6. Некоторые важные соотношения:

sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

7. Формулы преобразования суммы тригонометрических функций в произведение:

sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

tg a + tg b = sin (a + b)/(cos a cos b);

tg a – tg b = sin (a – b)/(cos a cos b).

А также формулы приведения.

В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

Во всех необходимых случаях (т. е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

Ознакомимся с методами решения уравнений:

1. Сведение к виду аx2 + bx + c = 0

2. Однородность уравнений.

3. Разложение на множители.

4. Сведение к виду a2 + b2 + c2 = 0

5. Замена переменных.

6. Сведение уравнения к уравнению с одной переменной.

7. Оценка левой и правой части.

8. Метод пристального взгляда.

9. Введение вспомогательного угла.

10. Метод “ Разделяй и властвуй ”.

Рассмотрим примеры:

1. Решить уравнение: sin x + cos2 х = 1/4.

Решение: Решим методом сведения к квадратному уравнению. Выразим cos2 х через sin2 x

sin x + 1 – sin2 x = 1/4

4 sin2 x – 4 s
ОК
Ольга Купчий
1 860
Лучший ответ
Замена tgx+ctgx=y.
тут надо 100 рублей на чекушку, иначе не разобраться:)

для пошагового надо нажать "стэп бай стэп"