Впервые отрицательные числа были частично узаконены в классическом китайском трактате «Математика в девяти книгах» (II в до н. э.), а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта (III в н. э.), признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными, он определил все четыре операции с отрицательными числами.
В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что
0
−
4
=
0
0-4=0, так как «ничто не может быть меньше, чем ничто»[3]. Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.
В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси, благодаря введению в 1637 г. Рене Декартом прямоугольной системы координат. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция
1
:
(
−
1
)
=
(
−
1
)
:
1
1:(-1)=(-1):1 — в ней первый член слева больше второго, а справа — наоборот, и получается, что большее равно меньшему («парадокс Арно»). Валлис считал, что отрицательные числа меньше нуля, но в то же время больше, чем бесконечность[4]. Непонятно было также, какой смысл имеет умножение отрицательных чисел, и почему произведение отрицательных положительно; на эту тему проходили жаркие дискуссии. Гаусс в 1831 году считал нужным разъяснить, что отрицательные числа принципиально имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, потому что дроби тоже применимы не ко всем вещам (например, неприменимы при счёте людей)[5].
Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке (Уильям Гамильтон и Герман Грассман).
Домашние задания: Алгебра
Кто первым стал использовать отрицательные числа?
Я
Бомж Валера из Предавыперска
pygane.Lalt()
screon - pygane. display, set nodo ((WIDTH, ARTORT))
gygame.display.set caption ( Migame
clock - pygane, tane, clock ()
screon - pygane. display, set nodo ((WIDTH, ARTORT))
gygame.display.set caption ( Migame
clock - pygane, tane, clock ()
Похожие вопросы
- Может ли в ответе в смешанной дроби быть в числителе отрицательное число
- Как доказать, что сложением отрицательных чисел нельзя получить положительное?
- Пожалуйста, помогите решить задачу про число n и сумму цифр некоторых двух последовательных чисел! На доказательство (!)
- Математика, модуль Почему если a<1, то |a-1|+|-7| = -a+8, если модуль не может быть отрицательным?
- Существует ли целое число, которое при зачеркивании первой цифры уменьшиться в 57 раз?
- Найдите наименьшее четырехзначное число, имеющее наибольшее число различных делителей.
- Дима написал на доске 70 различных натуральных чисел (см). Как решить?
- Сколько четырёхзначных чисел, у которых все цифры различные, можно составить из цифр: 6, 7, 8, 9, 0
- Найти число НОД
- Чётные и нечетные числа