Домашние задания: Математика
Вычислить площадь треугольной рамки
Поясним подробнее то, как выглядит треугольная рамка. Ее изготовление происходит следующим образом: берется доска из красного дерева, имеющая форму треугольника со сторонами a, b и c. После этого стороны этого треугольника мысленно сдвигаются внутрь него на расстояние d (измеряемое по перпендикуляру к соответствующей стороне). На точках пересечения «сдвинутых» сторон строится маленький треугольник, который затем вырезается из исходного.
S треуг - S вырезанного треуг
Maimun Saade
S вырезанного треуг = ?
В голову приходит только итерационный метод:
1. Находим площадь большого треугольника по формуле герона. Находим высоту к 1 стороне (красная линия). Строим подобный треугольник на расстоянии d от выбранной стороны (зеленый треугольник). Находим его стороны по подобию треугольников (h-d)/h.
Аналогично проделываем со второй стороной (желтая высота, зеленый треугольник) и с третьей стороной (синяя высота оранжевый треугольник) и в итоге получаем маленький черный треугольник. все стороны нам известны - по Герону найдем площадь. Отнимаем от исходной эту и получаем площадь рамки.
Вот не самый красивый код на MS SQL (что было под рукой), который наглядно показывает итерации
DECLARE @a float(53),
@b float(53),
@c float(53),
@d FLOAT(53),
@p float(53),
@s float(53),
@sOriginal float(53),
@hc float(53),
@hb float(53),
@ha float(53)
SELECT @a = 6.0, @b = 6.0, @d = 1
SET @c = SQRT(POWER(@a, 2) + POWER(@b, 2))
SELECT @a, @b, @c
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SET @sOriginal = @s
SET @hc = @s / @c * 2
SELECT
@a = @a * (@hc - @d) / @hc,
@b = @b * (@hc - @d) / @hc,
@c = @c * (@hc - @d) / @hc
SELECT @a, @b, @c
---------------------------------
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SET @hb = @s / @b * 2
SELECT
@a = @a * (@hb - @d) / @hb,
@b = @b * (@hb - @d) / @hb,
@c = @c * (@hb - @d) / @hb
SELECT @a, @b, @c
---------------------------------
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SET @ha = @s / @a * 2
SELECT
@a = @a * (@ha - @d) / @ha,
@b = @b * (@ha - @d) / @ha,
@c = @c * (@ha - @d) / @ha
SELECT @a, @b, @c
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SELECT @sOriginal - @s -- площадь рамки

1. Находим площадь большого треугольника по формуле герона. Находим высоту к 1 стороне (красная линия). Строим подобный треугольник на расстоянии d от выбранной стороны (зеленый треугольник). Находим его стороны по подобию треугольников (h-d)/h.
Аналогично проделываем со второй стороной (желтая высота, зеленый треугольник) и с третьей стороной (синяя высота оранжевый треугольник) и в итоге получаем маленький черный треугольник. все стороны нам известны - по Герону найдем площадь. Отнимаем от исходной эту и получаем площадь рамки.
Вот не самый красивый код на MS SQL (что было под рукой), который наглядно показывает итерации
DECLARE @a float(53),
@b float(53),
@c float(53),
@d FLOAT(53),
@p float(53),
@s float(53),
@sOriginal float(53),
@hc float(53),
@hb float(53),
@ha float(53)
SELECT @a = 6.0, @b = 6.0, @d = 1
SET @c = SQRT(POWER(@a, 2) + POWER(@b, 2))
SELECT @a, @b, @c
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SET @sOriginal = @s
SET @hc = @s / @c * 2
SELECT
@a = @a * (@hc - @d) / @hc,
@b = @b * (@hc - @d) / @hc,
@c = @c * (@hc - @d) / @hc
SELECT @a, @b, @c
---------------------------------
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SET @hb = @s / @b * 2
SELECT
@a = @a * (@hb - @d) / @hb,
@b = @b * (@hb - @d) / @hb,
@c = @c * (@hb - @d) / @hb
SELECT @a, @b, @c
---------------------------------
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SET @ha = @s / @a * 2
SELECT
@a = @a * (@ha - @d) / @ha,
@b = @b * (@ha - @d) / @ha,
@c = @c * (@ha - @d) / @ha
SELECT @a, @b, @c
SET @p = (@a + @b + @c) / 2
SET @s = SQRT(@p * (@p - @a) * (@p - @b) * (@p - @c))
SELECT @sOriginal - @s -- площадь рамки

Похожие вопросы
- Вычислить площадь области D заданной кривыми: x^2+y^2-6y=0 и x^2+y^2-8y=0; y=x, x=0
- Помогите Вычислить производную функции
- Вычислить отношение объёмов.
- На поле, площадью 10 га можно выращивать картофель или свёклу в любой пропорции. Урожайность картофеля составляет 500 ц
- Площадь потолка 16.5м2, размер плитки 50х50. В упаковке 8 штук, сколько упаковок нужно взять?
- Площадь садового участка 266 м?. Ширина участка 14 м. Найди периметр этого садового участка.
- Вычислите двойной придел
- Помогите пожалуйста найти площадь фигуры, ограниченной кривой, заданной параметрически.
- Чему равна площадь окружности радиуса Пи ?
- Найдите площадь четырехугольника ABCD с вершинами в точках A(2;7), B(1;4) , C(2;-1) и D(-4;4)