Домашние задания: Другие предметы

Помогите с геометрией пожалуйста

Дан четырёхугольник ABCD в котором диагонали имеют общую середину. На продолжении стороны AD за вершину D взята точка E, DC=EC докажите что
четырёхугольник ABCE является равнобедренной трапецией. Помогите пожалуйста, мне срочно сейчас нужно!
усть О - точка пересечения диагоналей четырехугольника АВСД.
Так как диагонали имеют общую середину, то О - это середина диагонали АС и АО = ОС,
О - это середина диагонали ВД и ВО = ОД.

Треугольники АОД и ВОС равны, так как АО=ОС, ВО=ОД, угол ВОС = АОД.
Поэтому угол ОДА = угол ОВС (лежат против равных сторон) , поэтому АД и ВС параллельны, значит в
четырехугольнике АВСЕ противоположные стороны АЕ и ВС параллельны, то есть это трапеция.

Треугольники АОВ и СОД равны, так как АО=ОС, ВО=ОД, угол ВОА = СОД.
Поэтому АВ = СД. Но по условию СД = СЕ, поэтому АВ = СЕ.
Так как АВ = СЕ, АВСЕ - равнобедренная трапеция.
(2) СПАСИБО (9)
Сардана Ядреева
Сардана Ядреева
213
Лучший ответ
Пусть О - точка пересечения диагоналей четырехугольника АВСД.
Так как диагонали имеют общую середину, то О - это середина диагонали АС и АО = ОС,
О - это середина диагонали ВД и ВО = ОД.

Треугольники АОД и ВОС равны, так как АО=ОС, ВО=ОД, угол ВОС = АОД.
Поэтому угол ОДА = угол ОВС (лежат против равных сторон) , поэтому АД и ВС параллельны, значит в
четырехугольнике АВСЕ противоположные стороны АЕ и ВС параллельны, то есть это трапеция.

Треугольники АОВ и СОД равны, так как АО=ОС, ВО=ОД, угол ВОА = СОД.
Поэтому АВ = СД. Но по условию СД = СЕ, поэтому АВ = СЕ.
Так как АВ = СЕ, АВСЕ - равнобедренная трапеция.