Естественные науки
Наименьшее значение выражения: корень ((x-9)^2+4) + корень (x^2+y^2)+ корень ((y-3)^2+9)
Наименьшее значение выражения: корень ((x-9)^2+4) + корень (x^2+y^2)+ корень ((y-3)^2+9). Помогите найти наименьшее значение этого выражение пожалуйста)) ) Буду очень благодарен.
f(min) = f(21/5; 7/4) = 13.
Сначала найдем точку минимума, для чего вычислим производную:
y’ = (2x3 − 3x2 − 12x + 1)’ = 6x2 − 6x − 12.
Найдем критические точки, решив уравнение y’ = 0. Получим стандартное квадратное уравнение:
y’ = 0 ⇒ 6x2 − 6x − 12 = 0 ⇒ ...⇒ x1 = −1, x2 = 2.
Отметим эти точки на координатной прямой, добавим знаки производной и ограничения — концы отрезка:
Стандартное решение задачи B11
Масштаб картинки не имеет значения. Самое главное — отметить точки в правильной последовательности. Из школьного курса математики известно, что в точке минимума производная меняет знак с минуса на плюс. Отсчет всегда идет слева направо — в направлении положительной полуоси. Поэтому точка минимума одна: x = 2.
Теперь найдем минимальное значение функции на отрезке [−3; 3]. Оно достигается либо в точке минимума (тогда она становится точкой глобального минимума) , либо на конце отрезка. Заметим, что на интервале (2; 3) производная всюду положительна, а значит y(3) > y(2), поэтому правый конец отрезка можно не рассматривать. Остались лишь точки x = −3 (левый конец отрезка) и x = 2 (точка минимума) . Имеем:
y(−3) = 2(−3)3 − 3(−3)2 − 12(−3) + 1 = −44;
y(2) = 2*23 − 3*22 − 12*2 + 1 = −19.
Итак, наименьшее значение функции достигается на конце отрезка и равно −44.
Ответ: xmin = 2; ymin = −44
y’ = (2x3 − 3x2 − 12x + 1)’ = 6x2 − 6x − 12.
Найдем критические точки, решив уравнение y’ = 0. Получим стандартное квадратное уравнение:
y’ = 0 ⇒ 6x2 − 6x − 12 = 0 ⇒ ...⇒ x1 = −1, x2 = 2.
Отметим эти точки на координатной прямой, добавим знаки производной и ограничения — концы отрезка:
Стандартное решение задачи B11
Масштаб картинки не имеет значения. Самое главное — отметить точки в правильной последовательности. Из школьного курса математики известно, что в точке минимума производная меняет знак с минуса на плюс. Отсчет всегда идет слева направо — в направлении положительной полуоси. Поэтому точка минимума одна: x = 2.
Теперь найдем минимальное значение функции на отрезке [−3; 3]. Оно достигается либо в точке минимума (тогда она становится точкой глобального минимума) , либо на конце отрезка. Заметим, что на интервале (2; 3) производная всюду положительна, а значит y(3) > y(2), поэтому правый конец отрезка можно не рассматривать. Остались лишь точки x = −3 (левый конец отрезка) и x = 2 (точка минимума) . Имеем:
y(−3) = 2(−3)3 − 3(−3)2 − 12(−3) + 1 = −44;
y(2) = 2*23 − 3*22 − 12*2 + 1 = −19.
Итак, наименьшее значение функции достигается на конце отрезка и равно −44.
Ответ: xmin = 2; ymin = −44
Алена Шут
охх , спасибо большое))))
Аспект Кориалстраз
Ну, и бредятина.
Похожие вопросы
- . u=√(x^2+y^2+z^2 ) . Найти grad z и его длину в точке (2,-2,1)
- Решите однородное дифференциальное уравнение первого порядка xydx – (x^2 + y^2)dy = 0
- Как решить уравнение (11+x)^2 - y^2 = 119
- Почему в действительных числах нет разложения на множители x^2+y^2 ?
- Проинтегрировать уравнение xdx+ydy+(ydx-xdy)/(x^2+y^2)=0, можно с фото пожалуйста, очень завис на этом уравнении.
- Помогите, плиз, Найти наибольшее и наименьшее значения функции z (x,y) в замкнутой области D. Z= sin y +sin (x+y)
- Составить уравнение плоскости содержащей прямую L и перпендикулярной прямой M. L:(x+2)/4=(y-1)/4=z/2 M:x/2=y=(z-2)/6.
- x^2+y=7 y^2+x=11 помогите решить...
- Задача, решите пож-та: Найти координаты центра тяжести параболистического сегмента, ограниченного линиями y=4-x^2, y=0.
- Если x - действительное число, то как доказать, что x^2 = (-x)^2?